The residual method for regularizing ill-posed problems

نویسندگان

  • Markus Grasmair
  • Markus Haltmeier
  • Otmar Scherzer
چکیده

Although the residual method, or constrained regularization, is frequently used in applications, a detailed study of its properties is still missing. This sharply contrasts the progress of the theory of Tikhonov regularization, where a series of new results for regularization in Banach spaces has been published in the recent years. The present paper intends to bridge the gap between the existing theories as far as possible. We develop a stability and convergence theory for the residual method in general topological spaces. In addition, we prove convergence rates in terms of (generalized) Bregman distances, which can also be applied to non-convex regularization functionals.We provide three examples that show the applicability of our theory. The first example is the regularized solution of linear operator equations on L(p)-spaces, where we show that the results of Tikhonov regularization generalize unchanged to the residual method. As a second example, we consider the problem of density estimation from a finite number of sampling points, using the Wasserstein distance as a fidelity term and an entropy measure as regularization term. It is shown that the densities obtained in this way depend continuously on the location of the sampled points and that the underlying density can be recovered as the number of sampling points tends to infinity. Finally, we apply our theory to compressed sensing. Here, we show the well-posedness of the method and derive convergence rates both for convex and non-convex regularization under rather weak conditions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On regularizing effects of MINRES and MR-II for large scale symmetric discrete ill-posed problems

Abstract. For large-scale symmetric discrete ill-posed problems, MINRES and MR-II are commonly used iterative solvers. In this paper, we analyze their regularizing effects. We first prove that the regularized solutions by MINRES have filtered SVD forms. Then we show that (i) a hybrid MINRES that uses explicit regularization within projected problems is generally needed to compute a best possibl...

متن کامل

Local Annihilation Method ‎and‎ Some Stiff ‎Problems

In this article‎, ‎a new scheme inspired from collocation method is‎ ‎presented for numerical solution of stiff initial-value problems and Fredholm integral equations of the first kind based on the derivatives of residual function‎. ‎Then‎, ‎the error analysis‎ ‎of this method is investigated by presenting an error bound‎. ‎Numerical comparisons indicate that the‎ ‎presented method yields accur...

متن کامل

Regularizing active set method for nonnegatively constrained ill-posed multichannel image restoration problem.

In this paper, we consider the nonnegatively constrained multichannel image deblurring problem and propose regularizing active set methods for numerical restoration. For image deblurring problems, it is reasonable to solve a regularizing model with nonnegativity constraints because of the physical meaning of the image. We consider a general regularizing l(p)-l(q) model with nonnegativity constr...

متن کامل

Noise Propagation in Regularizing Iterations for Image Deblurring

We use the two-dimensional discrete cosine transform to study how the noise from the data enters the reconstructed images computed by regularizing iterations, that is, Krylov subspace methods applied to discrete ill-posed problems. The regularization in these methods is obtained via the projection onto the associated Krylov subspace. We focus on CGLS/LSQR, GMRES, and RRGMRES, as well as MINRES ...

متن کامل

Large-Scale Methods in Image Deblurring

We use the two-dimensional DCT to study several properties of reconstructed images computed by regularizing iterations, that is, Krylov subspace methods applied to discrete ill-posed problems. The regularization in these methods is obtained via the projection onto the associated Krylov subspace. We focus on CGLS/LSQR, GMRES, and RRGMRES, as well as MINRES and MR-II in the symmetric case.

متن کامل

Ill-Posed and Linear Inverse Problems

In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 218  شماره 

صفحات  -

تاریخ انتشار 2011